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Abstract

The unsteady flow of an incompressible viscous non-Newtonian fluid above an infinite rotating disk is studied with

heat transfer. The effect of the non-Newtonian fluid characteristics on the velocity and temperature distributions as well

as the heat transfer is considered. Numerical solutions for the non-linear partial differential equations which govern the

hydrodynamics and energy transfer are obtained.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

In 1921 von Karman [1] has studied the fluid flow due

to an infinite rotating disk. Later, Cochran [2] obtained

asymptotic solutions for the steady hydrodynamic

problem formulated by von Karman. Benton [3] ex-

tended the problem to flow started impulsively from rest.

The steady flow of a non-Newtonian fluid due to a ro-

tating disk was considered by Mithal [4]. The solutions

obtained were valid for small values of the parameter

which describes the non-Newtonian behavior. Srivast-

ava [5] extended the problem to the case where the flow

is between two infinite disks, one is rotating and the

other is at rest.

The problem of heat transfer from a rotating disk

maintained at a constant temperature was first consid-

ered by Millsaps and Pohlhausen [6] for a variety of

Prandtl numbers in the steady state. Sparrow and Gregg

[7] studied the steady state heat transfer from a rotating

disk maintained at a constant temperature to fluids at

any Prandtl number. Later, many authors have studied

the heat transfer near a rotating disk considering dif-

ferent thermal conditions [8–12].

In the present work, the unsteady laminar flow of a

viscous incompressible non-Newtonian fluid due to the

uniform rotation of an infinite disk is studied with heat

transfer. The temperature of the disk is impulsively

changed and then maintained at a constant value. Due

to the difference in temperature between the ambient and

the surface of the disk heat transfer takes place. The

governing non-linear partial differential equations are

integrated numerically using the finite difference ap-

proximations. The effect of the characteristics of the

non-Newtonian fluid on the unsteady flow and heat

transfer is discussed.

2. Basic equations

Let the disk lie in the plane z ¼ 0 and the space z > 0

is equipped by a viscous incompressible non-Newtonian

fluid. The motion is started impulsively from rest due to

the rotation of the disk with a constant angular velocity

x about the axis of the disk. The equations of unsteady

motion are given by
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where u, v, and w are velocity components in the direc-

tions of increasing r, /, and z respectively, and q is the

density of the fluid. The non-Newtonian fluid considered

in the present paper is that for which the stress tensor sij
is related to the rate of strain tensor eij as [4]

sij ¼ 2leij þ 2lce
i
ke

k
j � pdi

j; ejj ¼ 0; ð5Þ

where p is denoting the pressure, l is the coefficient of

viscosity and lc is the coefficient of cross viscosity.

By introducing von Karman transformations [1],

u ¼ rxF ; v ¼ rxG; w ¼ ðxmÞ1=2H ;

z ¼ ðm=xÞ1=2f; p � p1 ¼ �qmxP ;

where f is a non-dimensional distance measured along

the axis of rotation, F , G, H , and P are non-dimensional

functions of f and t, and m is the kinematic viscosity of

the fluid, m ¼ l=q. With these definitions, Eqs. (1)–(5)

take the form
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where K is the parameter that describes the non-New-

tonian behavior, K ¼ lcx=l. The initial and boundary

conditions for the velocity problem are given by

F ð0; fÞ ¼ 0; Gð0; fÞ ¼ 0; Hð0; fÞ ¼ 0; ð10aÞ

F ðt; 0Þ ¼ 0; Gðt; 0Þ ¼ 1; Hðt; 0Þ ¼ 0; ð10bÞ

F ðt;1Þ ¼ 0; Gðt;1Þ ¼ 0; P ðt;1Þ ¼ 0: ð10cÞ

The initial conditions are given by Eq. (10a). Eq. (10b)

indicates the no-slip condition of viscous flow applied at

the surface of the disk. Far from the surface of the disk,

all fluid velocities must vanish aside the induced axial

component as indicated in Eq. (10c). The above system

of Eqs. (6)–(9) with the prescribed initial and boundary

conditions given by Eq. (10) are sufficient to solve for the

three components of the flow velocity and the pressure

distribution.

Due to the difference in temperature between the wall

and the ambient fluid heat transfer takes place. The

energy equation, by neglecting the dissipation terms,

takes the form [6,7],
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The initial and boundary conditions for the energy

problem are that the temperature is changed impulsively

from rest and, by continuity considerations, it equals Tw
at the surface of the disk. At large distances from the

disk, T tends to T1 where T1 is the temperature of the

ambient fluid.

In terms of the non-dimensional variable h ¼
ðT � T1Þ=ðTw � T1Þ and using von Karman transfor-

mations equation (11) takes the form,
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where Pr is the Prandtl number given by, Pr ¼ cpl=k.
The initial and boundary conditions in terms of h are

expressed as

hð0; fÞ ¼ 0; hðt; 0Þ ¼ 1; hðt;1Þ ¼ 0: ð13Þ

The heat transfer from the disk surface to the fluid is

computed by application of Fourier�s law; q ¼
�kðoT=ozÞw. Introducing the transformed variables, the

expression for q becomes

q ¼ �kðTw � T1Þ
x
m

� �1=2 ohðt; 0Þ
of

:

By rephrasing the heat transfer results in terms of a

Nusselt number defined as, Nu ¼ qðm=xÞ1=2=kðTw � T1Þ
the last equation becomes

Nu ¼ � ohðt; 0Þ
of

:

Since the significant velocity and temperature variations

in the fluid are confined to the region adjacent to the

disk, we define the thickness of these layers by certain

standard measures [7]. For the tangential direction, we

define a displacement thickness as

ddis ¼
Z 1

0

Gdf:

As a measure of the extent of the thermal layer, we may

introduce a thermal thickness based on the temperature

excess above the ambient, then,

dt ¼
Z 1

0

hdf:

The action of viscosity in the fluid adjacent to the disk

tends to set up a tangential shear stress s/ which opposes

the rotation of the disk. There is also a surface shear

2696 H.A. Attia / International Journal of Heat and Mass Transfer 46 (2003) 2695–2700



stress sr in the radial direction which, practically

speaking, is of lesser importance than is the tangential

stress. In terms of the variables of the analysis and by

applying Newtonian shear formula [7], the expressions

of s/ and sr are respectively given as

s/

qrðmx3Þ1=2
¼ s/ ¼ oGðt; 0Þ

of
;

sr

qrðmx3Þ1=2
¼ sr ¼

oF ðt; 0Þ
of

:

3. The numerical solution

Numerical solution for the governing non-linear

equations (6)–(9) with the conditions given by Eq. (10),

using the finite-difference approximations, leads to a

numerical oscillation problem resulting from the dis-

continuity between the initial and boundary conditions

(10a) and (10b). The same discontinuity occurs between

the initial and boundary conditions for the energy

problem (see Eq. (13)). A solution for this numerical

problem is achieved by using proper coordinate trans-

formations, as suggested by Ames [13] for similar

problems. Expressing Eqs. (6)–(9) and (12) in terms of

the modified coordinate g ¼ f=2
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The system of non-linear Partial differential equations

(14)–(18) can be solved to determine the velocity, pres-

sure, and temperature distributions. Here, Eqs. (14)–(16)

and (18) are solved to determine the velocity and tem-

perature distributions under the conditions given by

Eqs. (10) and (13) while Eq. (17) may be solved to de-

termine the pressure distribution if required. The

Crank–Nicolson implicit method with a marching

technique is applied [13]. The resulting system of dif-

ference equations has to be solved in the infinite domain

0 < f < 1 and 0 < t < 1. A finite domain in the f-di-
rection can be used instead with f chosen large enough

to ensure that the solutions are not affected by imposing

the asymptotic conditions at a finite distance. However,

due to the suggested coordinate transformation, this fi-

nite domain diminishes with the progression of time and

affects the accuracy of the numerical solution. To sub-

stitute for this problem, the modified Eqs. (15)–(17) are

integrated from t ¼ 0 to t ¼ 1. Then, the solution ob-

tained at t ¼ 1 is used as the initial condition for inte-

grating Eqs. (6)–(8) and (12) from t ¼ 1 towards the

steady state. It should be noted that the steady state

solutions reported by Mithal [4] are reproduced by ex-

tending the transient solutions obtained here to the

steady state. Also, the present results reduce to those

reported by Attia [12] in the case of Newtonian fluid.

4. Results and discussion

The time growth of the axial velocity at infinity H1
for various values of the parameter K is shown in Fig.

1a. Increasing K decreases the axial flow towards the

disk. Also, the parameter K has an interesting effect in

reversing the direction of the axial velocity for some time

which results in a crossover for the charts of H1 with

time. The time at which the crossover point occurs in-

creases as K increases. Fig. 1b presents the time varia-

tion of the azimuthal boundary layer thickness ddis for

various values of K. It is clear from the figure that as K
increases ddis increases with the presence of overshoo-

tings during the progress of time. The overshoots in-

crease as K increases. Fig. 1c and d present the time

variation of the tangential and radial shear stresses s/

and sr respectively for various values of K. Increasing K
decreases the magnitude of s/ for small and moderate

values of K, while increases its growth time as shown in

Fig. 1c. Fig. 1d indicates an interesting effect for K in

reversing the direction of sr during time. For small and

moderate values of K, increasing K decreases sr, how-
ever, increases its growth time. For large values of K
(K ¼ 2), as shown in Fig. 1c and d, overshoots appear in

both s/ and sr which indicates that the increase in K is

expected to destabilize the laminar flow.

Fig. 1e presents the time development of the Nusselt

number Nu for various values of the parameter K and

for Pr ¼ 10 which is appropriate for common liquids

(water, oil, and so on) [14]. It is shown that as K in-

creases Nu decreases. This is due to the fact that in-

creasing K resists the axial flow towards the disk and

then prevents the fluid at near-ambient temperature to

be brought to the neighborhood of the surface of the

disk which reduces the heat transfer (and hence, the
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Nusselt number). Fig. 1f indicates the effect of increasing

dt as a result of increasing K due to the influence of K in

damping the axial flow towards the disk. It is also shown

that, for large K (K ¼ 2), a reduction in dt happens at a

certain time which can be attributed to the reversal of

the direction of H occurs with the progress in time (see

Fig. 1a).

Fig. 2a–d present the steady state velocity compo-

nents and temperature, F , G, H and h respectively for

various values of K and for Pr ¼ 10. Fig. 2a indicates

Fig. 1. Effect of K on the time variation of: (a) H1, (b) ddis, (c) s/, (d) sr, (e) Nu, and (f) dt.
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that increasing the parameter K decreases F for small

and moderate values of f (f ¼ 0–4). However, for large

values of f a crossover point that depends on K appears

and an increment in K increases F . It is clear from Fig.

2b that increasing K increases G for all f. Fig. 2c shows

that increasing the parameter K increases the resistance

for the incoming axial flow and consequently reduces the

axial velocity towards the disk H for all f due to the

influence of K on reducing F . Fig. 2d indicates that in-

creasing K increases the temperature h for all f due to

the effect of K in damping H .

5. Conclusions

In this paper the unsteady flow of a non-Newtonian

fluid due to the uniform rotation of an infinite disk is

studied with heat transfer. The effect of the non-New-

tonian fluid characteristics, in terms of a parameter K,

on the velocity and temperature distributions is consid-

ered. The parameter K has an interesting effect on re-

versing the direction of the axial velocity as well as the

radial wall shear during time. Another important effect

of K is the crossover appears in the H1–t and F –f charts.
It can be concluded also that large values of the pa-

rameter K are expected to destabilize the laminar flow.

Also, the parameter K has a reasonable effect on the heat

transfer and temperature variations during time.
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